From Complete to Partial Flags in Geometric Extension Algebras
نویسنده
چکیده
A geometric extension algebra is an extension algebra of a semi-simple perverse sheaf (allowing shifts), e.g. a push-forward of the constant sheaf under a projective map. Particular nice situations arise for collapsings of homogeneous vector bundle over homogeneous spaces. In this paper, we study the relationship between partial flag and complete flag cases. Our main result is that the locally finite modules over the geometric extension algebras are related by a recollement. As examples, we investigate parabolic affine nil Hecke algebras, geometric extension algebras associated to parabolic Springer maps and an example of Reineke of a parabolic quiver-graded Hecke algebra.
منابع مشابه
Representation Theory of Geometric Extension Algebras
We study the question of when geometric extension algebras are polynomial quasihereditary. Our main theorem is that under certain assumptions, a geometric extension algebra is polynomial quasihereditary if and only if it arises from an even resolution. We give an application to the construction of reflection functors for quiver Hecke algebras.
متن کاملUniversal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملCorrigendum to "On $(sigma, tau)$-module extension Banach algebras"
In this corrigendum, we give a correction of one result in reference [1].
متن کاملFunctors Induced by Cauchy Extension of C$^ast$-algebras
In this paper, we give three functors $mathfrak{P}$, $[cdot]_K$ and $mathfrak{F}$ on the category of C$^ast$-algebras. The functor $mathfrak{P}$ assigns to each C$^ast$-algebra $mathcal{A}$ a pre-C$^ast$-algebra $mathfrak{P}(mathcal{A})$ with completion $[mathcal{A}]_K$. The functor $[cdot]_K$ assigns to each C$^ast$-algebra $mathcal{A}$ the Cauchy extension $[mathcal{A}]_K$ of $mathcal{A}$ by ...
متن کاملApproximate $n-$ideal amenability of module extension Banach algebras
Let $mathcal{A}$ be a Banach algebra and $X$ be a Banach $mathcal{A}-$bimodule. We study the notion of approximate $n-$ideal amenability for module extension Banach algebras $mathcal{A}oplus X$. First, we describe the structure of ideals of this kind of algebras and we present the necessary and sufficient conditions for a module extension Banach algebra to be approximately n-ideally amenable.
متن کامل